PSEUDO-VALUATION DOMAINS: A SURVEY

AYMAN BADAWI

1. Introduction

We assume throughout that all rings are commutative with $1 \neq 0$. We begin by recalling some background material. As in [31], an integral domain R, with quotient field K, is called a pseudo-valuation domain (PVD) in case each prime ideal P of R is strongly prime, in the sense that $xy \in P, x \in K, y \in K$ implies that either $x \in P$ or $y \in P$. Pseudo-valuation domains have been studied extensively in [32], [24], [3], [4], [6], [30], [28], [7] [1], [2], [35], [36], [33], [34], [9], [10], [12], [13], [38], and [19]. In [8], Anderson, Dobbs and the author generalized the study of pseudo-valuation domains to the context of arbitrary rings (possibly with nonzero zerodivisors). Recall from [8] and [5] that a prime ideal P of R is said to be strongly prime (in R) if aP and bR are comparable (under inclusion) for all $a, b \in R$. A ring R is called a pseudovaluation ring (PVR) if each prime ideal of R is strongly prime. A PVR is necessarily quasilocal [8, Lemma 1(b)]; a chained ring(recall that a ring R is said to be a chained ring if for every $a, b \in R$, either $a \mid b$ or $b \mid a$ is a PVR [[8], Corollary 4]; and an integral domain is a PVR if and only if it is a PVD (cf. [3, Proposition 3.1], [4, Proposition 4.2], and [10, Proposition 3]). Recall from [11] and [25] that a prime ideal P of R is called divided if it is comparable (under inclusion) to every ideal of R. A ring R is called a divided ring if every prime ideal of R is divided. In [14], the author gave another generalization of PVDs to the context of arbitrary rings (possibly with nonzero zerodivisors).

Recall from [14] that for a ring R with total quotient ring T(R) such that Nil(R) is a divided prime ideal of R, let $\phi: T(R) \longrightarrow K := R_{Nil(R)}$ such that $\phi(a/b) = a/b$ for every $a \in R$ and every $b \in R \setminus Z(R)$. Then ϕ is a ring homomorphism from T(R) into K, and ϕ restricted to R is also a ring homomorphism from R into K given by $\phi(x) = x/1$ for every $x \in R$. A prime ideal Q of $\phi(R)$ is called a K-strongly prime if $xy \in Q$, $x \in K, y \in K$ implies that either $x \in Q$ or $y \in Q$. If each prime ideal of $\phi(R)$ is K-strongly prime, then $\phi(R)$ is called a K-pseudo-valuation ring (K-PVR). A prime ideal P of R is called a ϕ -strongly prime if $\phi(P)$ is a K-strongly prime ideal of $\phi(R)$. If each prime ideal of R is ϕ -strongly prime, then R is called a ϕ -pseudo-valuation ring $(\phi - PVR)$. It is shown in [14, Corollary 7(2)] that a ring R is a ϕ -PVR if and only if Nil(R) is a divided prime ideal and for every $a,b \in R \setminus Nil(R)$, either $a \mid b$ in R or $b \mid ac$ in R for each nonunit $c \in R$. Also, it is shown in [15, Theorem 2.6] that for each $n \ge 0$ there is a ϕ -PVR of Krull dimension n that is not a PVR. φ-pseudo-valuation rings have been studied extensively in [14]. [15], [16], [17], and [22]. We would like to point out that if R is an integral domain, then Dobbs, Fontana, Huckaba, and Papick in [30] have defined and studied "T-strongly primes" and "strong rings" (see section 4). Chang [22] gave another generalization of pseudo-valuation domains. Recall from [22] that a Marot ring R with total quotient ring T(R) is called an r-pseudo-valuation ring (r-PVR) if each regular prime ideal P of R is r-strongly prime, in the sense that $xy \in P$, $x \in T(R)$, $y \in T(R)$ implies that either $x \in P$ or $y \in P$. Chang [22] gave an example of an r-PVR that is not a ϕ -PVR.

In this article, we will only study and survey pseudo-valuation domains. If the reader is interested in the generalization of pseudo-valuation domains to the context of an arbitrary rings with nonzero zerodivosors, then we recommend the following papers: [8], [5], [11], [12], [13], [14], [15], [16], [17], [18], and [22].

2. PSEUDO-VALUATION COMAINS

We begin by stating some simple properties and characterizations of pseudovaluation domains (PVDs). Recall that an integral domain R is called a valuation domain if for every $a, b \in R$, either $a \mid b$ or $b \mid a$.

PROPOSITION 2.1. ([31, Proposition 1.1]. Every valuation domain is a pseudo-valuation domain. □

The following proposition is a characterization of strongly prime ideals.

PROPOSITION 2.2. ([31, Proposition 1.2]). Let P be a prime ideal of a domain R with quotient field K. Then P is strongly prime if and only if $x^{-1}P \subset P$ whenever $x \in K \setminus R$. \square

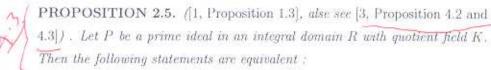
PROPOSITION 2.3. ([31, Corollary 1.3]). In a pseudo-valuation domain R, the prime ideals are linearly ordered (under inclusion). In particular, R is quasilocal. □

Anderson [4, Proposition 4.6] gave the following characterization of nonprincipal strongly prime ideals:

PROPOSITION 2.4. ([4, Proposition 4.6]). Let R be an integral domain with quotient field K, and let I be a nonzero ideal of R. Then the following statements are equivalent:

- I is a nonprincipal strongly prime ideal.
- I⁻¹ = {x ∈ K : xI ⊂ R} is a ring and I is comparable to each principal fractional ideal of R. □

Let I be an ideal of an integral domain R with quotient field K. Then $I: I = \{x \in K : xI \subset I\}$. Another characterization of strongly prime ideals was given in [1, Proposition 1.3]:



- 1. P is a strongly prime ideal.
- S = K \ P is multiplicatively closed.
- 3. P is prime and is comparable to each fractional ideal of R.
- A. P: P is a valuation domain with maximal ideal P.
- P is a prime ideal in some valuation overring of R. □

PROPOSITION 2.6. (Proposition 2.5 and [35, Theorem 7] and [5, Corollary 3.7(b)]). Let P be a strongly prime ideal of an integral domain R. Then $R_P = P : P$ if and only if R_P is a valuation domain. In particular, if P is a nonmaximal ideal of R, then $R_P = P : P$ is a valuation domain. \square

PROPOSITION 2.7. ([35, Theorem 1]). Let R be a pseudo-valuation domain, and let I be an ideal of R and P be a prime ideal of R such that $P \subset I$. Then P is a prime ideal of $I: I = \{x \in K : xI \subset I\}$. \square

PROPOSITION 2.8. ([31, Theorem 1.4 and Theorem 1.5]). Let R be an integral domain with quotient field K. The following statements are equivalent:

- 1. R is a pseudo-valuation domain.
- 2. A maximal ideal of R is strongly prime.
- 3. For each $x \in K \setminus R$ and for each nonunit a of R, we have $x^{-1}a \in R$. \square .

The following proposition is a restatement of Proposition 2.8(3).

PROPOSITION 2.9. ([10, Proposition 3(4)]) An integral domain is a PVD if and only if for every $a, b \in R$, either $a \mid b$ or $b \mid ac$ for every nonunit c of R, \square .

PROPOSITION 2.10. ([31, Corollary 2.9], also see [9, Proposition 5]). If a pseudo-valuation domain R has a nonzero principal prime ideal, then R is a valuation domain. □.

Hedstrom and Houston [31, Theorem 2.10] gave the following characterization of pseudo-valuation domains:

PROPOSITION 2.11. ([31, Theorem 2.10]). Let (R, M) be a quasilocal domain with quotient field K which is not a valuation domain. Then R is a pseudo-valuation domain if and only if $M^{-1} = \{x \in K : xM \subset R\}$ is a valuation domain with maximal ideal M. \square

Anderson and Dobbs [6, Proposition 2.5] sharpened the above Proposition.

PROPOSITION 2.12. ([6, Proposition 2.5]). Let (R, M) be a quasilocal domain with quotient field K. Then R is a pseudo-valuation domain if and only if $M: M = \{x \in K : xM \subset M\}$ is a valuation domain with maximal ideal M. \square

Anderson [4, Proposition 4.1] gave this characterization of pseudo-valuation domains:

PROPOSITION 2.13. ([4, Proposition 4.1]). Let R be an integral domain with quotient field K. The following statements are equivalent:

- 1. R is a pseudo-valuation domain, (and hence quasilocal).
- For each x ∈ K and prime ideal P of A, xA and P are comparable (under inclusion). □

If R is a ring, then U(R) denotes the set of all units of R. Anderson and Anderson [1, Theorem 1.2] gave the following characterization of pseudovaluation domains: PROPOSITION 2.14. ([1, Theorem 1.2]). Let K be a field and R be a subring of K with group of units U(R). Then $S = (K \setminus R) \cup U(R)$ is multiplicatively closed if and only if either R is a pseudo-valuation domain with quotient field K or R is a subfield of K. \square

Let b be an element of an integral domain R. Then an element d of R is called a proper divisor of b if b = dm for some nonunit $m \in R$. Badawi[12, Proposition 4] gave the following characterization of pseudo-valuation domains:

PROPOSITION 2.15. ([12, Proposition 4]). An integral domain R is a pseudo-valuation domain if and only if for every $a, b \in R$, either $a \mid b$ or $d \mid a$ for every proper divisor d of b. \square

Anderson and Dobbs [6, Proposition 2.6] showed that a pseudo-valuation domain is the pullback of a valuation domain;

PROPOSITION 2.16. ([6, Proposition 2.6]). Let V be a valuation domain with maximal ideal M, F = V/M its residue field, $\phi : V \longrightarrow F$ the canonical epimorphism, k a subfield of F, and $R = \phi^{-1}(k)$. Then the pullback $R = V \times_F k$ is a pseudo-valuation domain. \square

In the following proposition, Dobbs [24, Proposition 4.9] gave an extension of Hedstrom-Houston's observation [31, Example 2.1] that the D+M-construction yields a pseudo-valuation domain whenever D is a field.

PROPOSITION 2.17. ([24, Proposition 4.9]). Let $M \neq 0$ be the maximal ideal of a valuation domain V = K + M, where K is a field. Let D be a proper subring of K. Set R = D + M. Then R is a pseudo-valuation domain if and only if either D is a pseudo-valuation domain with quotient field K or D is a field. 2.1. Examples of pseudo-valuation domains. Hedstrom and Houston gave the following example of a pseudo-valuation domain that is not a valuation domain:

EXAMPLE 2.1.1. ([31, example 2.1]). Let V be a valuation domain of the form K+M, where K is a field and M is the maximal ideal of V. If F is a proper subfield of K, then R=F+M is a pseudo-valuation domain that is not a valuation domain. In particular, if K is a field and F is a proper subfield of K, then F+XK[[X]] is a pseudo-valuation domain that is not a valuation domain. For example, Q+XR[[X]] is a pseudo-valuation domain that is not a valuation domain. \square

EXAMPLE 2.1.2. ([32, Example 3.1]). For each positive integer n (possibly infinite), there is a pseudo-valuation domain of Krull dimension n that is not a valuation domain. Let D = Q + XR[[X]]. Then D is a pseudo-valuation domain of Krull dimension 1 that is not a valuation domain. Now, assume that n > 1. Let K be the quotient field of D. Then there is a valuation domain of the form K + M with maximal ideal M of Krull dimension n - 1. Then R = D + M is a pseudo-valuation domain by Proposition 2.17. By standard properties of the D + M-construction, R is not a valuation domain and R has n Krull dimension.

3. OVERRINGS THAT ARE PSEUDO-VALUATION DOMAINS

Recall that if R is an integral domain with quotient field K, then we say that B is an overring of R if $R \subset B \subset K$. We start with the following proposition:

PROPOSITION 3.1. ([31, Proposition 2.6]. Let R be a pseudo-valuation domain with maximal ideal M. If P is a nonmaximal prime ideal of R, then R_P is a valuation domain, (and hence a pseudo-valuation domain). \square . PROPOSITION 3.2. ([3, Proposition 4.3], also see [9, Proposition 6]). Let R be an integral domain with quotient field K. Supopose that P is a nonzero strongly prime ideal of R. Then:

- 1. If P is not principal, then $P^{-1}=\{x\in K:xP\subset R\}=P:P=\{x\in K:xP\subset P\}$ is a valuation domain.
- 2. If P is principal, then P: P = R is a valuation domain. \square .

Anderson, Badawi, and Dobbs [8, Lemma 20] showed the following:

PROPOSITION 3.3. ([8, Lemma 20]. Let R be a pseudo-valuation domain with maximal ideal M. Let B be an overring of R. If s⁻¹ ∈ B for some nonzero s ∈ M, then B is a pseudo-valuation domain. □

Let R' be the integral closure of R.

PROPOSITION 3.4. ([31, Proposition 2.7], [24, Proposition 4.2]). Let R be a pseudo-valuation domain with maximal ideal M. Then R' = M : M if and only if every overring of R is a pseudo-valuation domain. \square

Badawi showed the following:

PROPOSITION 3.5. ([12, Corollary 18]). Let R be a pseudo-valuation domain with maximal ideal M. Then the following statements are equivalent:

- 1. R' = M : M.
- 2. Every overring of R is a pseudo-valuation domain.
- Every overring C of R such that C ⊂ M : M is a pseudo-valuation domain.
- Every overring C of R such that C ⊂ M : M is a pseudo-valuation domain with maximal ideal M.
- 5. M is the maximal ideal of every overring C of R such that C ⊂ M: M,

 R ⊂ C satisfies the INC condition for every overring C of R such that C ⊂ M : M. (Recall that R ⊂ C satisfies the INC condition if any two prime ideals of C with the same contraction in R are incomparable (under inclusion).)

Anderson, Badawi, and Dobbs showed the following:

PROPOSITION 3.6. ([5, Corollary 2.2] If (R, M) is a pseudo-valuation domain, then the following conditions are equivalent:

- 1. R' = M : M.
- 2. Every overring of R is a pseudo-valuation domain.
- Every overring of R that does not contain an element of the form 1/s for some s∈ M is a pseudo-valuation domain.
- For each u ∈ (M : M) \ R, R[u] is a pseudo-valuation domain.
- For each u ∈ (M : M) \ R, R[u] is quasilocal.
- 6. Every overring of R is quasilocal. □

Badawi[13, Theorem 3] proved the following result:

PROPOSITION 3.7. ([13, Theorem 3]). Let (R, M) be a pseudo-valuation domain with quotient field K, and let V be a variation domain with maximal ideal N such that $R \subset V \subset K$. If $P = N \cap R$ is different from M, then $V = R_P$. \square

The above result was used to prove the following:

PROPOSITION 3.8. ([13, Theorem 8]). Let (R, M) be a pseudo-valuation domain with quotient field K. The following are equivalent:

- 1. R' = M : M.
- Every valuation domain V of R other than M: M such that R ⊂ V ⊂ K
 is of the form R_P for some nonmaximal prime ideal P of R.

3. Every overring of R is a pseudo-valuation domain.

Recall that an overring B of an integral domain R is called a proper overring of R if $R \neq B$. Let R be an integral domain with quotient field K. Okabe[36] defined R to be a quasi-valuation domain (QVD) if each proper quasilocal overring B of R with maximal ideal M_B satisfies the condition (QV) R: B = $\{x \in K: xB \subset R\} = M_B$. Okabe showed the following:

PROPOSITION 3.9. ([36, Proposition 1]). Every Valuation domain is a quasi-valuation domain. □

Using the concept of quasi-valuation domains, Okabe proved the following:

PROPOSITION 3.10. ([36, Theorem 8]). Let R be a quasilocal domain with maximal ideal M and quotient field K. Then the following conditions are equivalent:

- 1. R is a quasi-valuation domain.
- 2. Each overring of R is a pseudo-valuation domain.
- 3. Each proper valuation overring V of R satisfies (QV).
- Each proper minimal valuation overring of R satisfies (QV).
- 5. some proper minimal valuation overring of R satisfies (QV).
- 6. $R' = M^{-1} = \{x \in K : xM \subset R\}.$

Recall that an integral domain R with quotient field K is called seminormal if whenever $x^2, x^3 \in R$ for some $x \in K$, then $x \in R$. Anderson, Dobbs, and Huckaba proved the following result:

PROPOSITION 3.11. ([7, Proposition 3.1]).

- 1. Each pseudo-valuation domain is seminormal.
- Let R be a pseudo-valuation domain with maximal ideal M and quotient field K. Then the following four conditions are equivalent:

- (a) For each α ∈ K \ R, each overring of R which is maximal without α is a pseudo-valuation domain.
- (b) Each overring of R is seminormal.
- (c) Each overring of R is a pseudo-valuation domain.
- (d) R' = M : M . □

Let R be an integral domain with quotient field K. Dobbs and Fontana[28] defined R to be a locally pseudo-valuation domain (LPVD)if R_P is a pseudovaluation domain for every (nonzero) prime ideal P of R. For a generalization of locally pseudo-valuation domains to the context of arbitrary rings with nonzero zerodivisors see [18]. Dobbs and Fontara showed the following:

PROPOSITION 3.12. ([28, Proposition 2.2]). An integral domain R is a locally pseudo-valuation domain if and only if R_M is a pseudo-valuation domain for every maximal ideal M of R. \square

PROPOSITION 3.13. ([28, Example 2.5]). Let $n \ge 2$. Then there exists a locally pseudo-valuation domain R with precisely n maximal ideals, such that R is neither a pseudo-valuation domain nor a Früfer domain.

Proof. (sketch). Let k be a field with the following two properties: (1) there exist n pairwise incomparable valuation domains $V_i = k + M_i$ having (maximal ideal M_i , residue class field k and) a common quotient field; (2) there exists n distinct proper subfields k_i of k. Then $R = \cap (k_i + M_i)$ is a locally pseudo-valuation domain, and R is neither a Prüfer demain nor a pseudo-valuation domain.

Let R be an integral domain with quotient field K. Recall from [37] that R is said to be an i-domain if the contraction map $i: Spec(S) \longrightarrow Spec(R)$ is an

injection for each overring S of R; equivalently ([37, Corollary 2.15]), if the integral closure of R_M is a valuation domain for each maximal ideal M of R.

PROPOSITION 3.14. ([28, Theorem 2.9]). Let R be an integral domain. Then the following conditions are equivalent:

- 1. Each overring of R is a locally pseudo-valuation domain.
- R is a locally pseudo-valuation domain and each overring of R is seminormal.
- 3. R is a locally pseudo-valuation domain and R' is a Prüfer domain.
- R is a locally pseudo-valuation domain and an i-domain. □

PROPOSITION 3.15. ([28, Corollary 2.10]). Let R be a pseudo-valuation domain with maximal ideal M. Then the following conditions are equivalent:

- Each overring of R is seminormal.
- 2. Each overring of R is a locally pseudo-valuation domain.
- 3. Each overring of R is a pseudo-valuation domain.
- 4. $R' = M : M. \square$.

Let R be an integral domain with quotient field K. Matsuda[33] called an overring of R which is maximal without a specified element of $K \setminus R$ a specified overring s-overring. Matsuda[33] showed the following:

PROPOSITION 3.16. ([33, Theorem 3]). Assume that R is a domain with R' is quasilocal. Then if each s-overring of R is a pseudo-valuation domain, then each overring of R is a pseudo-valuation domain. \square

PROPOSITION 3.17. ([33, Theorem 4]). Let R be an integral domain with quotient field K. Then the following conditions are equivalent:

1. Each s-overring of R is a pseudo-valuation domain.

- Each s-overring B of R is a pseudo-valuation domain with maximal ideal M_B, and B' = M_B: M_B.
- Each s-overring B of R is an i-domain, and each integral overring of B is seminormal.
- For each s-overring B of R, each integral overring of B is seminormal, and B' is a pseudo-valuation domain.
- Each overring of R is seminormal, and, for each overring B of R which is not an i-domain, B' contains no s-overring of B.
- Each overring of R is seminormal, and each s-overring of R is an idomain.
- Each integral overring of R is seminormal, R' is a Prüfer domain, and each s-overring of R is an i-domain.
- For each maximal ideal M of R, each s-overring of R_M is a pseudovaluation domain.

Let R be an integral domain. Recall that R is called t-closed if, whenever $a, r, c \in R$ satisfies $a^3 + arc - c^2 = 0$, there exists $b \in R$ such that $b^2 - rb = a$, and $b^3 - rb^2 = c$. Picavet[38] showed the following:

PROPOSITION 3.18. ([38, Proposition 3.1]). Let R be a pseudo-valuation domain with maximal ideal M and quotient field K. Then:

- R is t-closed.
- 2. The following conditions are equivalent:
 - (a) Each overring of R is a pseudo-valuation domain.
 - (b) Each overring of R is t-closed.
 - (c) Each overring of R is seminormal.
 - (d) R' = M : M.

(e) For each α ∈ K \ R, each overring of R which is maximal without α is a pseudo-valuation domain. □

4. Atomic pseudo-valuation domains

Let R be an integral domain. Recall that a nonunit a of R is called an atom of R if a is an irreducible element of R. If each nonunit element of R is a product of atoms of R, then R is called an $atomic\ domain$. It is well-known that a Noetherian domain is an atomic domain. Hedstrom and Houston[31] showed the following:

PROPOSITION 4.1. ([31, Theorem 3.1]). Let R be a Noetherian domain with quotient field K and integral closure R'. Then R is a pseudo-valuation domain if and only if R' is a valuation domain. \square

PROPOSITION 4.2. ([31, Proposition 3.2]). If R is a Noetherian pseudovaluation domain which is not a field, then R has Krulll dimension 1. □

PROPOSITION 4.3. ([31, Corollary 3.3]). If R is a Noetherian pseudo-valuation domain, then every overring of R is a pseudo-valuation domain. \square

Let R be an atomic integral domain. Anderson and Mott [2] called a subset S of R a universal if each element of S is divisible by each atom of R. Anderson and Mott in [2] showed the following:

PROPOSITION 4.4. ([2, Theorem 5.1]). Let R be an atomic quasilocal domain with maximal ideal M. Then R is a pseudo-valuation domain if and only if M^2 is universal. \square

The following result is a stronger version of Proposition 4:2:

PROPOSITION 4.5. ([2, Corollary 5.2] and 12, Theorem 9]) and [23]). If R is an atomic pseudo-valuation domain which is not a field, then R has Krull dimension 1. □

Recall from [39] that an atomic integral domain R is called a half-factorial domain (HFD) if each factorization of a nonzero nonunit element of R into a product of irreducible elements (atoms) of R has the same length. Let R be a half-factorial domain and x be a nonzero element of R. Then we define L(x) = n if $x = x_1x_2...x_n$ for some atoms x, of R. If x is a unit of R, then L(x) = 0. We have the following:

PROPOSITION 4.6. ([2, Theorem 6.2], also see [12, Theorem 5]). If R is an atomic pseudo-valuation domain, then R is a half-factorial domain.

Badawi [12] gave a characterization of atomic pseudo-valuation domains in terms of half-factorial domains.

PROPOSITION 4.7. ([12, Theorem 6]). Let R be an atomic domain. Then the following statements are equivalent:

- R is a pseudo-valuation domain.
- R is a half-factorial domain and for every x, y ∈ R, if L(x) < L(y), then
 x | y in R. □
- 4.1. Examples of atomic pseudo-valuation domains.

EXAMPLE 4.1.1. ([31, Example 3.6]). Let $R = Z[\sqrt(5)](2, 1 + \sqrt(5))$. Then R is a Noetherian (and hence atomic) pseudo-valuation domain.

EXAMPLE 4.1.2. ([2]). Let k be any field and X, Y be indeterminates. Then R = k + Xk(y)[[X]] is an atomic pseudo-valuation domain that is not Noetherian. For further study on examples of pseudo-valuation domains, we recommend [29] and [23].

5. Related results

Let R be a subring of an integral domain T. Dobbs, Fontana, Huckaba, and Papick [30] called a prime ideal P of R T-strong if, whenever $x \in T$ and $y \in T$ satisfy $xy \in P$, then either $x \in P$ or $y \in P$. If each prime ideal of R is T-strong, then T is called a strong extension of R (or $R \subset T$ is a strong extension). Evidently, an integral domain R with quotient field K is a pseudo-valuation domain if and only if $R \subset K$ is a strong extension. The following is an example of a strong overring extension $R \subset T$ of domains for which neither R nor T is quasilocal, (and hence neither R nor T is a pseudo-valuation domain.

EXAMPLE 5.1. ([30, Example 2.1]). Let L be the quotient field of Z[X], and V = L + XL[[X]] (observe that V is a valuation domain with maximal ideal XL[[X]]). Set R = Z + XL[[X]] and T = Z[X] + XL[[X]]. Then $R \subset T$ is a strong overring extension with the stated properties. T = Z[X] + XL[[X]].

Recall from [25] that a prime ideal P of an integral domain R is said to be divided in R if P is comparable (under inclusion) with each principal ideal of R. The following result is stated in [30]:

PROPOSITION 5.2. ([30, Theorem 2.3]). Let P be a prime ideal of an integral domain R. Then $R \subseteq R_P$ is a strong extension if and only if both P is divided in R and R/P is a pseudo-valuation domain. Furthermore, if $R \subseteq R_P$ is a strong extension, then the set of all prime ideals of R which contain P is linearly ordered by inclusion and R is quasilocal. \square

55

The following result [30] states a characterization of pseudo-valuation domains in terms of strong extensions:

PROPOSITION 5.3. ([30, Theorem 2.9]). A domain R is a pseudo-valuation domain if and only if R has a prime ideal P setisfying the following two conditions:

- R ⊂ R_P is a strong extension; and
- R_P is a valuation domain. Recall that if A is a ring then U(A) denotes the set of all units of A. □

PROPOSITION 5.4. ([30, Theorem 3.1]). Let R be an integral domain which is distinct from its quotient field K; and T is an integral domain contains R. If $K \subset T$, then $R \subset T$ is a strong extension if and only if both R is a pseudo-valuation domain and U(T) = U(K). \square

Let R be an integral domain. Recall that an ideal I of R is called a cancellation ideal if, whenever $IJ_1=IJ_2$, then $J_1=J_2$. Also, recall that an ideal I of R is called a quasi-cancellation ideal, if $aI\subset IJ$ for some $a\in R$ and a finitely generated ideal J of R, then $a\in J$. Matsuda and Sugatani [34] proved the following:

PROPOSITION 5.5. ([34, Summary]).

- For a pseudo-valuation domain R, a nonzero ideal I of R is a cancellation ideal if and only if I is a principal ideal.
- There is a pseudo-valuation domain R that is not a valuation domain, such that R has a quasi-cancellation ideal which is not a cancellation ideal. □

Badawi and Houston in [19] called an ideal I of an integral domain R with quotient field K powerful if, whenever $x \in K$, $y \in K$, and $xy \in I$, then either $x \in I$ or $y \in I$.

PROPOSITION 5.6. ([19, Proposition 1.3, and Corollary 1.6]). A prime ideal of R is strongly prime if and only if it is powerful. In particular, an integral domain R is a pseudo-valuation domain if and only if a maximal ideal of R is powerful. □

PROPOSITION 5.7. ([19, Proposition 1.14]). Let I be a powerful ideal of an integral domain R, and suppose that $P \subset I$ is a nonzero finitely generated prime ideal of R. Then R is a pseudo-valuation domain. \square

Recall that R' denotes the integral closure of an integral domain R inside its quotient field.

PROPOSITION 5.8. ([19, Theorem 1.15]). Suppose that an integral domain R with quotient field K admits a powerful ideal I and that $M = Rad(I) = \{x \in R : x^n \in I \text{ for some } n \geq 1\}$ is a maximal ideal of R. Then :

- 1. R is quasilocal with maximal ideal M.
- IR' ⊂ M, and therefore IR' is an ideal of R.
- R' is a pseudo-valuation domain with maximal ideal N = Rad(IR'), and hence N : N = {x ∈ K : xN ⊂ N} is a valuation overring of R with maximal ideal N. □

Recall from [19] that an ideal I of an integral domain R with quotient field K is called strongly primary if, whenever $xy \in I$ for some $x,y \in K$, we have $x \in I$ or $y^n \in I$ for some $n \ge 1$. An integral domain R is called almost pseudovaluation domain (APVD) if every prime ideal of R is strongly primary. Also, recall from [25] that a prime ideal of R is called divided if it is comparable to

every principal ideal of R. If every prime ideal of R is divided, then R is called a divided domain. Dobbs in [24] proved that a pseudo-valuation domain is a divided domain. Badawi and Houston in [19] showed the following.

PROPOSITION 5.9. ([19, Proposition 3.2]). Let R be an almost pseudovaluation domain. Then R is a (quasilocal) divided domain. Moreover, every nonmaximal prime ideal of R is strongly prime. \square

PROPOSITION 5.10. ([19, Theorem 3.4]). The following statements are equivalent for an integral domain R:

- R is almost pseudo-domain.
- Some maximal ideal of R is strongly primary.
- R is a quasilocal domain, and the maximal ideal M of R is such that M: M is a valuation domain with M is primary to the maximal ideal of M: M. □

PROPOSITION 5.11. ([19, Proposition 3.7]). If R is an almost pseudovaluation domain with maximal ideal M, then R' is a pseudo-valuation domain with maximal ideal M. \square

PROPOSITION 5.12. ([19, Proposition 3.8]). If each overring of an integral domain R is an almost pseudo-valuation domain, then R' is a valuation domain. □

The converse of the Proposition 5.12 is false (see [19, Example 3.9].) However, we state the following result:

PROPOSITION 5.13. ([19, Proposition 3.10]). Let R be an almost pseudovaluation domain, and assume that every integral overring of R is an almost pseudo-valuation domain. Then every overring of R is an almost pseudovaluation domain. □ In [21] Bastida and Gilmer prove that a domain R shares an ideal with a valuation overring iff each overring of R which is different from the quotient field K of R has a nonzero conductor to R. Domains with this property, called conductive domains, were explicitly defined and studied by Dobbs and Fedder [26] and further studied by Barucci, Dobbs, and Fontana [20] and [27]. Recall from [26] that an integral domain R with quotient field K is called a conductive domain if for each overring T of R, the conductor $R: T = \{x \in K : xT \subset R\}$ is nonzero. Badawi and Houston in [19] showed that conducive domains, powerful ideals, and strongly primary ideals are intimately connected.

PROPOSITION 5.14. ([19, Theorem 4.1]). The following statements are equivalent:

- 1. R is a conducive domain.
- 2. R admits a powerful ideal.
- 3. R admits a strongly primary ideal.
- R shares a nonzero ideal with some conducive overring. □

References

- D. D. Anderson and D. F. Anderson, Multiplicatively closed subsets of fields, Houston J. Math. 13(1987), 1-11.
- [2] D. D. Anderson and J. L. Mott, Cohen-Kaplansky domains: Integral domains with a finite number of irreducible elements, J. Algebra 148(1992), 17-41.
- [3] D. F. Anderson, Comparability of ideals and valuation overrings, Houston J. Math. 5(1979), 451-463.
- D. F. Anderson, When the dual of an ideal is a ring, Houston J. Math. 9(1983), 325-332.
- [5] D. F. Anderson, A. Badawi, D. E. Dobbs, Pseudo-valuation rings II, Boll. Un. Mat. Ital. B(7)8(2000), 535-545.
- [6] D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Can. J. Math. 32(1980), 362-384.

- [7] D. F. Anderson and D. E. Dobbs and J. A. Huckabe, On Seminormal overrings, Comm. Algebra 10(1982), 1421-1448.
- [8] A. Badawi, D. F. Anderson, D. E. Dobbs, Pseudo-valuation rings, Lecture Notes Pure Appl. Math. Vol. 185(1997), 57-67, Marcel Dekker, New York/Basel.
- [9] A. Baduwi, A Visit to valuation and pseudo-valuation domains, Lecture Notes Pure Appl. Math. Vol. 171(1995), 155-161, Marcel Dekker, New York/Basel.
- [10] A. Badawi, On domains which have prime ideals that are linearly ordered, Comm. Algebra 23(1995), 4365-4373.
- A. Badawi ON Divided commutative rings, Comm. Algebra 27(1999), 1465-1474.
- [12] A. Badawi, Remarks on pseudo-valuation rings, Comm. Algebra 28(2000), 2343-2358.
- [13] A. Badawi On Chained overrings of pseudo-valuation rings, Comm. Algebra 23(2000), 2359-2366.
- [14] A. Badawi, On φ-pscudo-valuation rings, Lecture Notes Pure Appl. Math., Vol.205(1999), 101-110, Marcel Dekker, New York/Basel.
- [15] A. Badawi, On φ-pseudo-valuation rings II, Houston J. Math. 26(2000), 473-480.
- [16] A. Badawi, On φ-Chained rings and φ-pseudo-valuation rings, to appear in Houston J. Math.
- [17] A. Badawi, On Divided rings and φ-pseudo-valuation rings, to appear in International J. of Commutative Rings(IJCR).
- [18] A. Badawi and D. E. Dobbs, Some examples of locally divided rings, to appear in Lecture Notes Pure Appl. Math.
- [19] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudovaluation domains, and conducive domains, to appear in Comm. Algebra.
- [20] V. Barucci, D. E. Dobbs, and M. Fontana, Conducive integral domains as pullbacks, Manuscripta Math. 54(1986), 261-277.
- [21] E. Bastida and R. Gilmer, Overrings and divisorial ideals in rings of the form D + M, Michigan Math. J. 20(1973), 79-95.
- [22] G. W. Chang, Generalization of pseudo-valuation rings, to appear in International J. of Commutative Rings(IJCR).
- [23] J. Coykendall, D. E. Dobbs, and B. Mullins, On integral domains with no atoms, Comm. Algebra 27(1999), 5813-5831.

- [24] D. E. Dobbs, Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math. 4(1978), 551-567.
- [25] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67(1976), 353-363.
- [26] D. E. Dobbs and R. Fedder, Conducive integral domains, J. Algebra 86(1984), 494-510.
- [27] D. E. Dobbs, V. Barucci, and M. Fontana, Gorenstein Conducive domains, Comm. Algebra 18(1990), 3889-3903.
- [28] D. E. Dobbs and M. Fontana, Locally pseudo-valuation domains, Ann. Mat. Pura Appl. 134(1983), 147-168.
- [29] D. E. Dobbs and M. Fontana, On pseudo-valuation domains and their globalizations, Lecture Notes in Pure and Appl. Math., Vol. 84(1983), 65-77.
- [30] D. E. Dobbs and M. Fontana and J. A. Huckaba and I. J. Papick; Strong ring extensions and pseudo-valuation domains, Houston J. Math. 8(1982), 167-184.
- [31] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 4(1978), 551-567.
- [32] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, II, Houston J. Math. 4(1978), 199-207.
- [33] R. Matsuda, Note on overrings unthout a specified element, Math. J. of Ibaraki univ. 30(1998), 9-14.
- [34] R. Matsuda and T. Sugatani, Cancellation ideals in pseudo-valuation domains, Comm. Algebra 23(1995), 3983-3991.
- [35] A. Okabe, Some results on pseudo-valuation domains, Tsukuba J. Math. 8(1984), 333-338.
- [36] A. Okabe, On Quasi-valuation domains, Math. J. of Ibaraki Univ. 32(2000), 29-31.
- [37] I. J. Papick, Topological defined classes of going down rings, Trans. Amer. Math. Soc. 219(1976), 1-37.
- [38] M. Picavet-L'Hermitte, t-closed pairs, Lecture Notes Pure Appl. Math. Vol.(185), 401-415, Marcel Dekker, New York/Basel.
- [39] A. Zaks, Half-factorial domains, Bull. Amer. Math. Soc. 82(1976), 721-724.

DEPARTMENT OF MATHEMATICS, BIRZEIT UNIVERSITY, BOX 14, BIRZEIT, PALESTINE, VIA ISRAEL